Representation Theory and Probability

Part | - Representation theory, Littelmann's path model and probability
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Pioneers : Ph Biane, Ph. Bougerol, N. O'Connell
Pitman "2M-X" theorem :

B : standard Brownian motion

P(B): := B: — 2info<s<: Bs.

P(B) < Brownian motion conditioned (in Doob’s sense) to remain positive



Conditioned Markov Processes

Il Representations of s[(2,C) and Littelmann’s path model
Il Littelmann's path model and Pitman’s theorem

IV Semi-simple complex Lie algebras

V Representations of affine algebras and a conditioned space time Brownian
motion



I-Conditioned Markov Processes

e (Q, F,P) a probability space
(Xt)t>0 a Markov process with values in E,
transition semi-group (P:)¢>0
(6s)s>0 the time shift operators, X; 0 6 = X¢ys,t > 0.
I={AeF:Vs>0, 0;"(A)=A}
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I-Conditioned Markov Processes

e (Q, F,P) a probability space
(Xt)t>0 a Markov process with values in E,
transition semi-group (P¢)¢>0
(6s)s>0 the time shift operators, X; 0 6 = X¢ys,t > 0.
I={AeF:Vs>0, 0;"(A)=A}

e letAcZ
Consider the harmonic function h(x) = Px(A), x € E (Ex(h(X:)) = h(x)).
Suppose Ixg € E, h(xo) # 0.
Define a probability P, on Q

A~ 1
Ba) = gy Pl 1A
Notice that .
Py (B) = Ex( h((X(:))].BmA), Be F,

where (F:):>o is the natural filtration of (X¢)e>o.



I-Conditioned Markov Processes

e Under B, (X:)¢>0 is a Markov process with transition probability
semi-group
a h ~
Pt(xady): hgi’(;Pt(X7dy)7 X7y€E,
where E = {x € E : h(x) # 0}.

e Doob’s transform of Py, h-transform ...




I-Conditioned Markov Processes

Classical examples :

e Let g > 1 and (X,)n>0 be a simple random walk on Z with positive drift,
with Markov kernel
y—x

q
KX, =—-:"1 —x|=1»
(x,¥) qtq-! ly—x|=1

X,y € 7.
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Let T =inf{n: X, < —1}.
The event {T = +o0} is shift invariant for the killed process (Xna7).

The function h(x) = P,(T = +00) is harmonic for the killed process
(XanT) and vanishes on Z* .
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I-Conditioned Markov Processes

Let T =inf{n: X, < —1}.
The event {T = +o0} is shift invariant for the killed process (Xaa7).
The function h(x) = P,(T = +00) is harmonic for the killed process
(XanT) and vanishes on Z* .
One has
h(x) = Cq~"s:(q)1x>-1,
where s.(q) = %, x> -1
The process conditioned not to be killed has a Markov kernel

Ke) = 20 K(x,y)
sy(q)

=2 1, -1, X,y€N
sd(@)si(q)



I-Conditioned Markov Processes

When g — 1, the conditioned process converges toward the process with
Markov kernel
+1

Key) =50

(X_’_l)]-\y—x\:h X7y€N7

i.e., the simple symmetric random walk conditioned, in the Doob'’s sense,
to remain non negative.



I-Conditioned Markov Processes

e Let (B:)t>0 be a Brownian motion on R with drift v > 0, with semi-group
(pt)e=0. The Brownian motion conditioned to remain positive has

semi-group
1— e—2'vy

pe(x,y) = WP:(X ¥), x,y € Ry

where (P?)rzo is the semi-group of the killed Brownian motion, i.e.,
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I-Conditioned Markov Processes

e Let (B:)t>0 be a Brownian motion on R with drift v > 0, with semi-group
(pt)e=0. The Brownian motion conditioned to remain positive has

semi-group
1— e—2'vy

pe(x,y) = WP:(X ¥), x,y € Ry

where (P?)rzo is the semi-group of the killed Brownian motion, i.e.,

—2

pL(x,y) = pe(x,y) — € 7 pe(—x,y), x,y € Ry

When v — 0, one gets the standard Brownian motion conditioned, in the
Doob’s sense, to remain positive.
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1) Representation of sl(2, C)
e 5[(2,C) = {x € Mx(C) : tr(x) = 0} = Ce ® Cf @ Ch.
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[I-Representations of s[(2,C) and Littelmann’s path model

1) Representation of sl(2, C)
e 5[(2,C) = {x € Mx(C) : tr(x) = 0} = Ce ® Cf @ Ch.

0 1 0 0 1 0
(0 o) =1 0)»-0 %)
e Complex Lie algebra : Vector space over C equipped with a Lie bracket

[x,y] = xy — yx, x,y €5(2,C).
e Commutation relations : [h, €] = 2e, [h,f] = —2f, [e,f] = h.



[I-Representations of s[(2,C) and Littelmann’s path model

e A finite dimensional representation of sl(2,C) is a pair (p, V) where

1. V is a finite dimensional vector space over C,
2. p:sl(2,C) — End(V) is a homomorphism of Lie algebras :
a linear map and [p(x), p(y)] = plx, ¥], x,y € (2, C).
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[I-Representations of s[(2,C) and Littelmann’s path model

e A finite dimensional representation of sl(2,C) is a pair (p, V) where
1. V is a finite dimensional vector space over C,
2. p:sl(2,C) — End(V) is a homomorphism of Lie algebras :
a linear map and [p(x), p(y)] = plx, ¥], x,y € (2, C).
e (p, V) is irreducible if for every linear subspace W C V,
(Vx € 5l(2,C), p(x)W C W)= (W =0or W=V).
e Two representations (p1, V1) and (p2, V) are isomorphic if
3 an isomorphism ¢ : Vi — V, such that
Vx € sl(2,C), pa(x) o p = p 0 p1(x).
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o Complete reducibility : Let V be a finite dimensional representation of
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V=0V,
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[I-Representations of s[(2,C) and Littelmann’s path model

o Complete reducibility : Let V be a finite dimensional representation of
5[(2,C). Then
V=0V,
where each V; is irreducible. The decomposition is unique (up to
isomorphisms of representations).



[I-Representations of s[(2,C) and Littelmann’s path model

e An irreducible finite dimensional representation of s[(2,C) is isomorphic to
a representation V), A € N.

o V) =span{w,...,va}. Forie{1,...,A},
p(h)vi = (A = 2i)vi, p(f)vi = (i + 1)vit1, p(e)vi = (A — i + 1)vi1,

with v_1 = vy 41 = 0.



[I-Representations of s[(2,C) and Littelmann’s path model

e An irreducible finite dimensional representation of s[(2,C) is isomorphic to
a representation V), A € N.

o V) =span{w,...,va}. Forie{1,...,A},
p(h)vi = (A = 2i)vi, p(f)vi = (i + 1)vit1, p(e)vi = (A — i + 1)vi1,

with v_1 = vy 41 = 0.
e Terminology :
1. A —2i: weight of v;.
2. X : highest weight.
3. V), :irreducible representation with highest weight A.
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[I-Representations of s[(2,C) and Littelmann’s path model

e Character of a representation (p, V) : chy(q) = tr(¢”"), g € R..
e (p1, V1) and (p2, Vo) are isomorphic < chy, = chy,.

o (Weyl character formula)

chv(@)=¢ "+ 7+ +q"
_ Pt = g O
qg—q1
= sx(q).



[I-Representations of s[(2,C) and Littelmann’s path model

e For two representations (p1, V1), (p2, V2) one defines a representation
(p, Vi @ V2) letting for x € sl(2,C)

p(X)(vi ® v2) = p(x)(v1) ® va + vi ® pa(x)(v2), w1 € Vi, v € Va.
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[I-Representations of s[(2,C) and Littelmann’s path model

e For two representations (p1, V1), (p2, V2) one defines a representation
(p, Vi @ V2) letting for x € sl(2,C)

p(X)(vi ® v2) = p(x)(v1) ® va + vi ® pa(x)(v2), w1 € Vi, v € Va.

e For A\, €N,
Vi@ Vs~ P el Ve
M

equivalent to
S\Spg = Z C;:BS‘U,.
m
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[I-Representations of s[(2,C) and Littelmann’s path model

Examples

Vi’ Vi=span{vu®@v,u@®vi+vi®w,vi®wv}®C(vw®wv—v®w),
~ Vo W

The isomorphism is equivalent to sis1 = s, + s
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[I-Representations of s[(2,C) and Littelmann’s path model

e Glebsch-Gordan rule,

AeEN, syst=sy1+5sv-1, (s-.1=0)

n p—
51 = E NS,

AEN

where ny is the number of ways to go from 0 to A, with steps +1,
remaining non negative.

e Towards a path model ...
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e A path 7 (of size n) is an application
7 :[0,n = R,

m(0) = 0,7(n) € Z.
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[I-Representations of s[(2,C) and Littelmann’s path model

2) Littelmann paths model

e A path 7 (of size n) is an application

7 :[0,n] = R,
m(0) =0,7(n) € Z.
e concatenations of \ and /
e Weight of a path 7 of size n
w(m) := m(n).
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[I-Representations of s[(2,C) and Littelmann’s path model

e Littelmann’s operators e and f.
e Properties :
1. er =0 < Vt € [0,n] n(t) > 0. (7 is a dominant path)
2. if er #0 then fer =7
3. iffr A0 thenefr =7
4. if w is a dominant path and mw(n) = X then the smallest n such that f"7 =0
is A+ 1.



[I-Representations of s[(2,C) and Littelmann’s path model

Write ) for a dominant path ending at A € N.

e Littelmann module generated by a dominant path 7y

Bﬂ')\ = {7T)\,f7TA,...,f>\7TA}.



[I-Representations of s[(2,C) and Littelmann’s path model

Write ) for a dominant path ending at A € N.

e Littelmann module generated by a dominant path 7y

Bﬂ')\ = {7T)\,f7TA,...,f>\7TA}.

® q € R,,

Cth(q) = Z qw(ﬂ')

TEBT

= chy,(q) = sx(q)



[I-Representations of s[(2,C) and Littelmann’s path model

e \,feN
Bry x Bng = UBm,,

where the disjoint union runs over dominant paths 7, in Bmy * Brmg.



[I-Representations of s[(2,C) and Littelmann’s path model

e \,feN
Bry x Bng = UBm,,

where the disjoint union runs over dominant paths 7, in Bmy * Brmg.

e equivalent to

S 53 = Z Su

e thus ch:the number of dominant paths ending at p.



[I-Representations of s[(2,C) and Littelmann’s path model

A path 7 is in the Littelmann module generated by mx
~
For all t € [0, n],
P(m)(£) : = m(6) ~ 2, inf (i)}

= ma(t).



[ll-Littelmann’s path model and Pitman's theorem

e m(t)=1t,t€[0,1].



[ll-Littelmann’s path model and Pitman's theorem

o m(t)=t, t€l0,1].
o Let g € R+™, i be a probability measure on Br.
w(my) w(fmy)

p(m) = w(fm) = .
( 1) q q,la ( 1) q+qt
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[ll-Littelmann’s path model and Pitman's theorem

e Consider a sequence (x,,),,ZO of i.i.d. random paths, x; ~ p.
o X(t) =x(1) 4+ -+ xo—1(1) + xa(t — n), t € [n,n + 1].
o P(X(t) = x(t), t € [0,k]) = L2

q
si(q)k”




[ll-Littelmann’s path model and Pitman's theorem

Theorem : (PY(n),n > 0) is a Markov chain with transition kernel

sy(q)

— xl=1, X,y € N.
s(@si(q) I Y

K(x,y) =



[ll-Littelmann’s path model and Pitman's theorem

Theorem : (PY(n),n > 0) is a Markov chain with transition kernel
sy(q)
X,y x=1, X,y €N
Ko = Sqaa v
Corollary :

(PY(n),n > 0) is distribued as a simple random walk with drift
Z+q 11 conditioned to remain non negative.
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[ll-Littelmann’s path model and Pitman's theorem

Limit object when g =1
o LP(X)(nt) > P(B)(1)

e (P(B)(t),t > 0) as the same law as a standard Brownian motion
conditioned to remain postive.
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[ll-Littelmann’s path model and Pitman's theorem

Limit object when g = e 7, v > 0.
o LP(X)(nt) > P(BV)(¢)

e (P(B7)(t),t > 0) as the same law as a standard Brownian with drift
motion conditioned to remain postive.



