
Representation Theory and Probability

Part I - Representation theory, Littelmann’s path model and probability



Pioneers : Ph Biane, Ph. Bougerol, N. O’Connell

Pitman ”2M-X” theorem :

B : standard Brownian motion

P(B)t := Bt − 2 inf0≤s≤t Bs .

P(B)
d
= Brownian motion conditioned (in Doob’s sense) to remain positive



Pioneers : Ph Biane, Ph. Bougerol, N. O’Connell

Pitman ”2M-X” theorem :

B : standard Brownian motion

P(B)t := Bt − 2 inf0≤s≤t Bs .

P(B)
d
= Brownian motion conditioned (in Doob’s sense) to remain positive



Pioneers : Ph Biane, Ph. Bougerol, N. O’Connell

Pitman ”2M-X” theorem :

B : standard Brownian motion

P(B)t := Bt − 2 inf0≤s≤t Bs .

P(B)
d
= Brownian motion conditioned (in Doob’s sense) to remain positive



Pioneers : Ph Biane, Ph. Bougerol, N. O’Connell

Pitman ”2M-X” theorem :

B : standard Brownian motion

P(B)t := Bt − 2 inf0≤s≤t Bs .

P(B)
d
= Brownian motion conditioned (in Doob’s sense) to remain positive



Contents

I Conditioned Markov Processes

II Representations of sl(2,C) and Littelmann’s path model

III Littelmann’s path model and Pitman’s theorem

IV Semi-simple complex Lie algebras

V Representations of affine algebras and a conditioned space time Brownian
motion



I-Conditioned Markov Processes

• (Ω,F ,P) a probability space

(Xt)t≥0 a Markov process with values in E ,

transition semi-group (Pt)t≥0

(θs)s≥0 the time shift operators, Xt ◦ θs = Xt+s , t ≥ 0.

I = {A ∈ F : ∀s ≥ 0, θ−1
s (A) = A}

• Let A ∈ I
Consider the harmonic function h(x) = Px(A), x ∈ E (Ex(h(Xt)) = h(x)).

Suppose ∃x0 ∈ E , h(x0) 6= 0.

Define a probability P̂x0 on Ω

P̂x0 (.) =
1

h(x0)
Px0 (. ∩ A).

Notice that

P̂x0 (B) = Ex(
h(Xt)

h(x0)
1B∩A), B ∈ Ft ,

where (Ft)t≥0 is the natural filtration of (Xt)t≥0.
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I-Conditioned Markov Processes

• Under P̂x0 , (Xt)t≥0 is a Markov process with transition probability
semi-group

P̂t(x , dy) =
h(y)

h(x)
Pt(x , dy), x , y ∈ Ê ,

where Ê = {x ∈ E : h(x) 6= 0}.
• Doob’s transform of Pt , h-transform . . .



I-Conditioned Markov Processes

Classical examples :

• Let q > 1 and (Xn)n≥0 be a simple random walk on Z with positive drift,
with Markov kernel

K(x , y) =
qy−x

q + q−1
1|y−x|=1, x , y ∈ Z.



I-Conditioned Markov Processes

Let T = inf{n : Xn ≤ −1}.
The event {T = +∞} is shift invariant for the killed process (Xn∧T ).

The function h(x) = Px(T = +∞) is harmonic for the killed process
(Xn∧T ) and vanishes on Z∗−.

One has
h(x) = Cq−xsx(q)1x≥−1,

where sx(q) = qx+1−q−(x+1)

q−q−1 , x ≥ −1.

The process conditioned not to be killed has a Markov kernel

K̂(x , y) =
sy (q)q−y

sx(q)q−x
K(x , y)

=
sy (q)

sx(q)s1(q)
1|y−x|=1, x , y ∈ N.



I-Conditioned Markov Processes

Let T = inf{n : Xn ≤ −1}.
The event {T = +∞} is shift invariant for the killed process (Xn∧T ).

The function h(x) = Px(T = +∞) is harmonic for the killed process
(Xn∧T ) and vanishes on Z∗−.

One has
h(x) = Cq−xsx(q)1x≥−1,

where sx(q) = qx+1−q−(x+1)

q−q−1 , x ≥ −1.

The process conditioned not to be killed has a Markov kernel

K̂(x , y) =
sy (q)q−y

sx(q)q−x
K(x , y)

=
sy (q)

sx(q)s1(q)
1|y−x|=1, x , y ∈ N.



I-Conditioned Markov Processes

Let T = inf{n : Xn ≤ −1}.
The event {T = +∞} is shift invariant for the killed process (Xn∧T ).

The function h(x) = Px(T = +∞) is harmonic for the killed process
(Xn∧T ) and vanishes on Z∗−.

One has
h(x) = Cq−xsx(q)1x≥−1,

where sx(q) = qx+1−q−(x+1)

q−q−1 , x ≥ −1.

The process conditioned not to be killed has a Markov kernel

K̂(x , y) =
sy (q)q−y

sx(q)q−x
K(x , y)

=
sy (q)

sx(q)s1(q)
1|y−x|=1, x , y ∈ N.



I-Conditioned Markov Processes

When q → 1, the conditioned process converges toward the process with
Markov kernel

K̂(x , y) =
y + 1

2(x + 1)
1|y−x|=1, x , y ∈ N,

i.e., the simple symmetric random walk conditioned, in the Doob’s sense,
to remain non negative.



I-Conditioned Markov Processes

• Let (Bt)t≥0 be a Brownian motion on R with drift γ > 0, with semi-group
(pt)t≥0. The Brownian motion conditioned to remain positive has
semi-group

pt(x , y) =
1− e−2γy

1− e−2γx
p0
t (x , y), x , y ∈ R+

where (p0
t )t≥0 is the semi-group of the killed Brownian motion, i.e.,

p0
t (x , y) = pt(x , y)− e−2γxpt(−x , y), x , y ∈ R+

When γ → 0, one gets the standard Brownian motion conditioned, in the
Doob’s sense, to remain positive.
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II-Representations of sl(2,C) and Littelmann’s path model

1) Representation of sl(2,C)

• sl(2,C) = {x ∈ M2(C) : tr(x) = 0} = Ce ⊕ Cf ⊕ Ch.

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
,

• Complex Lie algebra : Vector space over C equipped with a Lie bracket
[x , y ] = xy − yx , x , y ∈ sl(2,C).

• Commutation relations : [h, e] = 2e, [h, f ] = −2f , [e, f ] = h.
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II-Representations of sl(2,C) and Littelmann’s path model

• A finite dimensional representation of sl(2,C) is a pair (ρ,V ) where
1. V is a finite dimensional vector space over C,
2. ρ : sl(2,C)→ End(V ) is a homomorphism of Lie algebras :

a linear map and [ρ(x), ρ(y)] = ρ[x , y ], x , y ∈ sl(2,C).

• (ρ,V ) is irreducible if for every linear subspace W ⊂ V ,
(∀x ∈ sl(2,C), ρ(x)W ⊂W )⇒ (W = ∅ or W = V ).

• Two representations (ρ1,V1) and (ρ2,V2) are isomorphic if
∃ an isomorphism ϕ : V1 → V2 such that
∀x ∈ sl(2,C), ρ2(x) ◦ ϕ = ϕ ◦ ρ1(x).
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II-Representations of sl(2,C) and Littelmann’s path model

• Complete reducibility : Let V be a finite dimensional representation of
sl(2,C). Then

V = ⊕Vi ,

where each Vi is irreducible.

The decomposition is unique (up to
isomorphisms of representations).
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II-Representations of sl(2,C) and Littelmann’s path model

• An irreducible finite dimensional representation of sl(2,C) is isomorphic to
a representation Vλ, λ ∈ N.

• Vλ = span{v0, . . . , vλ}. For i ∈ {1, . . . , λ},

ρ(h)vi = (λ− 2i)vi , ρ(f )vi = (i + 1)vi+1, ρ(e)vi = (λ− i + 1)vi−1,

with v−1 = vλ+1 = 0.

• Terminology :
1. λ− 2i : weight of vi .
2. λ : highest weight.
3. Vλ : irreducible representation with highest weight λ.
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II-Representations of sl(2,C) and Littelmann’s path model

• Character of a representation (ρ,V ) : chV (q) = tr(qρ(h)), q ∈ R∗.

• (ρ1,V1) and (ρ2,V2) are isomorphic ⇔ chV1 = chV2 .

• (Weyl character formula)

chVλ(q) = qλ + qλ−2 + · · ·+ q−λ

=
qλ+1 − q−(λ+1)

q − q−1

= sλ(q).
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II-Representations of sl(2,C) and Littelmann’s path model

• For two representations (ρ1,V1), (ρ2,V2) one defines a representation
(ρ,V1 ⊗ V2) letting for x ∈ sl(2,C)

ρ(x)(v1 ⊗ v2) = ρ(x)(v1)⊗ v2 + v1 ⊗ ρ2(x)(v2), v1 ∈ V1, v2 ∈ V2.

• For λ, β ∈ N,

Vλ ⊗ Vβ '
⊕
µ

cµλ,βVµ.

equivalent to

sλsβ =
∑
µ

cµλ,βsµ.
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II-Representations of sl(2,C) and Littelmann’s path model

Examples

•

V1 ⊗ V1 = span{v0 ⊗ v0, v0 ⊗ v1 + v1 ⊗ v0, v1 ⊗ v1} ⊕ C(v0 ⊗ v1 − v1 ⊗ v0),

' V2 ⊕ V0

The isomorphism is equivalent to s1s1 = s2 + s0
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II-Representations of sl(2,C) and Littelmann’s path model

• Glebsch-Gordan rule,

λ ∈ N, sλs1 = sλ+1 + sλ−1, (s−1 = 0)

•
sn1 =

∑
λ∈N

nλsλ,

where nλ is the number of ways to go from 0 to λ, with steps ±1,
remaining non negative.

• Towards a path model . . .
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II-Representations of sl(2,C) and Littelmann’s path model

2) Littelmann paths model

• A path π (of size n) is an application

π : [0, n]→ R,

π(0) = 0, π(n) ∈ Z.

• concatenations of \ and /

• Weight of a path π of size n

w(π) := π(n).
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II-Representations of sl(2,C) and Littelmann’s path model

• Littelmann’s operators e and f .

• Properties :
1. eπ = 0 ⇔ ∀t ∈ [0, n] π(t) ≥ 0. (π is a dominant path)
2. if eπ 6= 0 then feπ = π
3. if f π 6= 0 then ef π = π
4. if π is a dominant path and π(n) = λ then the smallest n such that f nπ = 0

is λ+ 1.
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II-Representations of sl(2,C) and Littelmann’s path model

Write πλ for a dominant path ending at λ ∈ N.

• Littelmann module generated by a dominant path πλ

Bπλ = {πλ, f πλ, . . . , f λπλ}.

• q ∈ R∗,

chBπλ(q) :=
∑

π∈Bπλ

qw(π)

= chVλ(q) = sλ(q)
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II-Representations of sl(2,C) and Littelmann’s path model

.

• λ, β ∈ N
Bπλ ∗ Bπβ = tBπµ,

where the disjoint union runs over dominant paths πµ in Bπλ ∗ Bπβ .

• equivalent to

sλsβ =
∑

sµ

• thus cµλ,β=the number of dominant paths ending at µ.
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II-Representations of sl(2,C) and Littelmann’s path model

A path π is in the Littelmann module generated by πλ

⇔

For all t ∈ [0, n],

P(π)(t) : = π(t)− 2 inf
0≤i≤t

{π(i)}

= πλ(t).



III-Littelmann’s path model and Pitman’s theorem

• π1(t) = t, t ∈ [0, 1].

• Let q ∈ R+∗, µ be a probability measure on Bπ1.

µ(π1) =
qw(π1)

q + q−1
, µ(f π1) =

qw(f π1)

q + q−1
.



III-Littelmann’s path model and Pitman’s theorem
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• Let q ∈ R+∗, µ be a probability measure on Bπ1.
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III-Littelmann’s path model and Pitman’s theorem

• Consider a sequence (xn)n≥0 of i.i.d. random paths, x1 ∼ µ.

• X (t) = x0(1) + · · ·+ xn−1(1) + xn(t − n), t ∈ [n, n + 1].
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K̂(x , y) =
sy (q)

sx(q)s1(q)
1|y−x|=1, x , y ∈ N.

Corollary : (PY (n), n ≥ 0) is distribued as a simple random walk with drift
q−q−1

q+q−1 conditioned to remain non negative.
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Limit object when q = 1

• 1√
n
P(X )(nt)→ P(B)(t)

• (P(B)(t), t ≥ 0) as the same law as a standard Brownian motion
conditioned to remain postive.
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